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Abstract: Hepatitis C virus (HCV) is one of the leading known causes of liver disease in the world.
The HCV is a single-stranded RNA virus. The genomes of HCV display significant sequence
heterogeneity and have been classified into types and subtypes. So far, 11 have been recognized with
each type having a variable number of subtypes. It has been confirmed that 90% approximately of
the isolates HCV infections in Egypt belong to a single subtype (4a) (Ray, S.C., R.R. Arthur, 2000).
In this paper, we construct a stochastic model to study the spread of HCV-subtype 4a amongst the
Egyptian population. Also the relation between HCV-subtype 4a and the other subtypes is been
studied. Also the effect of the mutation factor in the persistence of the disease is been addressed. In
this paper we use the method of the stochastic partial differential equations given in (Kapur, J.N.,
1988), (Kapur, J.N., 1992) and (Herbert, J., V.S. Isham, 1998), to derive our stochastic model and

02inthen try to solve this model. Threshold conditions for the value of the transmission rates k  and k1

01 02terms of R , R  and the mutation factor have been determined. Also Monte Carlo simulations have

1been conducted for this disease using the infection rates k  and k  as random numbers.2
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INTRODUCTION

Hepatitis C virus infection is found in 0.5% to 8.0% of blood donors worldwide. Because the infection
is chronic in more than 60% of infected persons, the disease is a major serious public health and economical
problem . An estimation of the the World Health Organization (WHO) points out that nearly 3% of the world
population are infected with HCV and about 20% to 30% of them may develop cirrhosis and 3% of them may
develop liver cancer (Das, P., D. Mukherjee, 2005). Egypt has possibly the highest HCV prevalence in the
world; 10-20% of the general population is infected and HCV is the leading cause of hepatocellular carcinoma
(HCC) and chronic liver disease in the country (El-Zayadi, A., H. Abaza, 2001). The genomes of hepatitis C
virus display significant sequence heterogeneity and have been classified into types and subtypes. Six types
from 1 to 6 had been recognized, each type having a different number of subtypes like a, b, c, etc. Recently,
new variants have been identified and assigned to proposed types 7 to 11. The worldwide presence of the virus
and the geographic distribution of genotypes clearly indicate that HCV is an old killer of the human kind and
(Dusheiko, G., W.H. Schmilovitz, 1994).

The majority of the Egyptian HCV carriers belong to a single subtype (4a), which responds less
successfully to interferon therapy than the other subtypes (Ray, S.C., R.R. Arthur, 2000). Heterogeneous
genomes which are called ”quasispecies” resulting from mutations due to high error rates in RNA replications
are found within the same host. Many important biological features of several viruses are attributable to their
quasispecies  nature, including vaccination failure, persistent infection, and resistance to antiviral drugs . To” ”

this date, there has not been a successful HCV vaccination or control strategy. So, we require an understanding
of the nature and variability of epidemic behavior among subtypes.

A few qualitative studies have been done using the mathematical modelling techniques. For example
Deuffic et al. (1999) constructed a mathematical model which is structured cording to age and gender of the
population. They studied the HCV in France and gave a prediction of the transmission until the year 2025.
Martcheva and Castillo-Vhavez (2003) studied an HCV model with chronic infectious stage in a non-constant
population. Their study showed that disease free solution exists and is globally asymptotically stable. Also their
results showed that, an endemic non-uniform state is locally asymptotically stable under certain conditions.
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Moneim and Mosa (2006) studied mathematically and numerically the effect of the mutation factor on the

01 02dynamics of the HCV in Egypt. We derived a formula for the secondary reproductive numbers R R  which,

the expected number of secondary cases produced by a single infected individual entering a disease free

01 02population at equilibrium (Greenhalgh, D. and I.A. Moneim, 2003). R R  were the keys parameter for our

01 02study. We drived conditions on R  R  for the disease to be endemic or die out. Stochastic study of the

mutation effect of the HCV is not studied in (Moneim, A.I. and G. Mosa, 2006).

As this disease is not studied enough, the problem still open and needs to be studied more and more to

give a clearer insight to the dynamics of this mysterious disease, and possibly solve or try to solve this major

worldwide problem.

In this paper we extend our previous work and to study a stochastic version of the deterministic model

given in (Moneim, A.I. and G. Mosa, 2006). We use the stochastic partial differential equation described in

Kapur’s book (Kapur, J.N., 1992) to derive a model for the spread of the (HCV-subtype 4a). Also, by using

appropriate approximations for the higher moments of the joint distributions, we obtain differential equations

1for the means, variances and co-variances of susceptibles, S, HCV-subtype 4a infectives, I , and HCV-all

2subtype except 4a infectives, I , (Herbert, J., V.S. Isham, 1998). Numerical simulations for stochastic version

are conducted and compared with the corresponding results which obtained from deterministic model. As the

way in which the disease is transmitted is undetermined precisely, it is more realistic to use random numbers

1 2for representing the values of the transmission rates k  and k . Monte Carlo simulations are also performed to

1 2highlight the effect of randomizing both of k  and k .

The Model:

We make the following assumptions in order to construct a model for the spread of the HCV disease:

1. The total population size is a constant N, and the population is divided into three groups:

a) The susceptible class, S, comprising those people who can get infected or those who are ready to catch

the disease;

1b) The Infective class, I , the individuals who are infected with HCV subtype 4a directly or with another

subtype and had mutated to subtype 4a;

2c) The Infective class, I , comprising individuals from all subtypes of HCV except the subtype 4a.
2. All types of HCV infections can mutate to HCV subtype 4a at a positive constant rate (ì).

3. The virus vertical transmission is rare (Oliver, G.P., A.C. Michael, 2001). All ages of population can be

infected by HCV virus. The basic way of the transmission is blood - to - blood, so susceptible class S

1 1moves in to the infective class (I ), by a positive constant contact rate k . Also S move s to the infected

2 2class I  by a positive constant rate k .

4. We assume that the birth and death rates are equal and positive constant rate b.

5. The population is mixing in a homogenous manner i.e. every person has the same chance to getting in

contact with an infected person.

2.1 The Deterministic Model:

The model for the spread of Virus HCV can be written as a set of three coupled non-linear ordinary

differential equations as follows:

  (1)

  (2)

and 

  (3)

with 

1 2We can say this model represents an SI I  model. This model is described by equations (1) - (3) which

represent a nonlinear first order system of differential equations. So, the solution of the linearized system about

the equilibrium points leads to useful information about the nonlinear system.



Aust. J. Basic & Appl. Sci., 3(2): 1253-1265, 2009

1255

2.2 Equilibrium Points:

The system represented by equations (1) - (3) have three equilibrium points as follows:

11. The disease free equilibrium (DFE) point, when the disease is absent in the population, in this case (I

2 1= I  = 0), therefore the population is fully susceptible. Thus, the first equilibrium point is DFE P / (N00).

22. The HCV free infection from all types except subtype 4a. So that, (I  = 0) then the second equilibrium

 point is .

3. HCV from all types of  infection.  Then                  . Therefore  the  third  equilibrium  point  is

2.3 The Basic Reproductive Numbers:

0The basic reproductive number R  is defined as the expected number of secondary cases produced by a

single infected individual entering the population at the disease free equilibrium (Greenhalgh, D. and I.A.

1 2Moneim, 2003). Since, our model has two infection class (I  and I ) then there are two basic reproductive

numbers:

  (4)

01 02The analysis of this showed that the HCV disease dies out from the population if both R  < 1 and R

01 02< 1, and the disease rises up when either R  > 1 or R  > 1 and becomes endemic. Details of the analysis

of this model are given in (Moneim, A.I. and G. Mosa, 2006)

2.4 the Stochastic Version of the Model:

nmh Now, we focus on the stochastic version of this pervious model. Let p (t) be the probability that there

are n susceptible persons, m infective persons with HCV subtype (4a) and h infective persons carrying HCV

with a different subtype than (4a), and let fijkÄ  + o(Ät) denote the probability that the numbers (nmh) changet

to (n + im + jh + k) in the time interval (tt + Ät). So moving a person from a class to another or adding a

person to any class by birth or removing one by death changes the system state from nmh to another and this

depends on the disease parameters as follows:

The general form of the stochastic partial differential equation describing our model is given as follows

(Murthy, D.N.P. N.W. Page, 1990) and (Herbert, J., V.S. Isham, 1998): By substituting into the following

partial differential equation, 

  (5)
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where  ö(t; xyz) is a probability generating function which defined as,

   (6 )

Equation (5) is the three dimensions version of the stochastic partial differential equation given in (Kapur,

J.N., 1992)and (Isham, V.S., 1995). Using the definition of the generating function ö(t; xyz) we can write:

  (7)

or 

  (8)

Equation (8) represents our basic stochastic partial differential equation of the spread of the Hepatitis B

Virus. Equation (8) is transformed into a system of ordinary differential equations for the means, variances and

co-variances of the original variables nm and h by differentiating equation (6) with respect to xy and z

respectively, and setting these variables to the value of one then we obtain, the differential equations governing

the means nm and h, of the original variables nm and h respectively as follows:

  (9)

  (10)
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  (11)

Differentiating Equation (6) again, we get the corresponding expressions for variances and co-variances

of the original variables nm and h denoted by                                        respectively,

   (12)

Similarly we find that,

  (13)

  (14)

 (15)



Aust. J. Basic & Appl. Sci., 3(2): 1253-1265, 2009

1258

 (16)

 (17)

Some of the above equations involve third moments of our variables, alternatively we use an

approximation to the third moments in terms of the mean, variances and co-variances by assuming our

variables obey a specific distribution. Here we use a multivariate Normal distribution where, the third  center

1 2 3moments of this distribution are zero, so tri-variate Normal variables W W  and W  satisfy the following

i i ij i jequation (using the notation m  = (W )m  = E(W W )).E

(18)

Now, the differential equations for variances and co-variances to variables are given as follows:

 (19)

 (20)

 (21)

  (22)

 (23)



Aust. J. Basic & Appl. Sci., 3(2): 1253-1265, 2009

1259

 (24)

Now we use the software Mathematica 5.1 to solve the system (9) - (11) and (19) - (24) numerically.

3 Numerical Simulation:

The system of the coupled non-linear ordinary differential equations (9) - (11) and (19) - (24) describe

1 2the means, variances and co-variances of the S, I  and I , is been solved numerically with the help of the

software Mathematica 5.1. Because of the lack of clinical data of HCV, this unclear virus, there is no real data

can be provided for our model. Then we use existing data for the parameter values for birth and death rates

and play with other. In our simulation we have used b = 002 (Greenhalgh, D. and I.A. Moneim, 2003), and

the total number of population N = 1000000. Then we suggest the value of the mutation rate to be = 002.

1 2 2Finally we chose different values of the contact rates (k  ,k ), between S and both of I  and I  to have different1

01 02 1 2 01 02values of the basic reproductive numbers (R R ). First we chose values of (k ,k ) to force both of R  and R

1 2 01 02to be less than one in value. Then we give (k ,k ) another values to guarantee that, both of R  and R  are

01 0 2 01 02 1 2large enough and satisfy: first R  > R  and finally R  <R  for another parameter set of (k ,k ), to test the

behaviour of our stochastic model near the three different equilibrium points of the model given in(Moneim,

A.I. and G. Mosa, 2006). We start of our simulation with initial values close to the equilibria. This is to

accelerate the convergence of the numerical solution to approach its limiting value.

01 0 2We start off our simulations with the case that, if both of the basic reproductive numbers , (R R ), are

less than one, the solution goes to an asymptotic value (N, 0, 0) which is the disease free solution.

Equivalently the mean value of (S(t),I1(t), I2(t)) tend to the DFE as the time goes to infinity. Figure (1) shows

1 2that both of I (t), I (t) tend to zero as the time becomes large, while the mean value of the susceptible

population S tends to the total population number N. This result is similar to the result obtained from the

numerical simulation for deterministic model at the same conditions and also confirm the asymptotic stability

1of the equilibrium point P  = (N00) (Moneim, A.I. and G. Mosa, 2006).

1 2Fig. 1: The numerical simulation of our model, plotting results of the (S(t), I (t), I (t)) against the time, when

01 02the basic reproductive numbers have the values (R R )= (0.8, 0.6)

01 02In the other hand if we take the basic reproductive numbers R  and R  large enough so that, both of them

01 02is greater than one, we have two cases: the first one, is that, when R  > R . As usual, we start our simulation

from a level near the second expected equilibrium point (Moneim, A.I. and G. Mosa, 2006). Figure (2)

represents this case and shows that the mean of susceptibles n decreases to approach its equilibrium value (S)

as t becomes very large. This means that the equilibrium value of the mean of susceptibles is independent from

1 2the total population size. It also shows that the mean of infected persons m of kind I , and h of kind I  ,
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approach an asymptotic endemic level for each compartment. The endemic level of the infected persons of kind

1 2I  is much larger than the one of the infected persons of kind I . These simulations results agree with the

numerical simulations of the deterministic model with the same conditions. This is also agree with the

asymptotic stability of the second equilibrium point stated in(Moneim, A.I. and G. Mosa, 2006).

1 2Fig. 2: The numerical simulation of our model, plotting results of the (S(t), I (t), I (t)) against the time, when

the basic reproductive numbers have the values ( 01 02)  , (20.0, 10.0)R R =

02 01 01Finally if, we take the basic reproductive number R  is greater than R  and greater than one, say (R  =

020R  = 20). Figure (3) a similar results to Figure (2) but with the endemic level of the infected persons of1

2 2kind I  is much larger than the corresponding one of the infected persons of the same kind I  given in figure

(2). Figure (3) also shows a very large of similarities of simulation results those of the corresponding results

02 01of the deterministic model when R  > R  > 1 and confirms the stability of the third equilibrium point

(Moneim, A.I. and G. Mosa, 2006).

1 2Fig. 3: The numerical simulation of our model, plotting results of the (S(t) ,I (t), I (t)) against the time, when

01 02the basic reproductive numbers have the values (R R )= (10.0, 20.0)
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The numerical simulations of the stochastic model confirm that the behaviour of our system depends

01 02mainly on the model parameter especially the values of the basic reproductive numbers , (R R )  When the.

01 02maximum value of R  and R  is less than one, the solution of the model goes to (N00), which represents the

DFE of the corresponding deterministic model described in (Moneim, A.I. and G. Mosa, 2006). In this case

01the DFE always exists and stable in both of the deterministic and stochastic models. Therefore when both R

02 01 02 02 01and R  > 1 are less than one, the disease will die out. But if, R  > R  > 1 or R  > R  > 1 then the

solutions of the model go to endemic equilibrium levels. These levels are equivalent to the second and third

equilibrium points the corresponding deterministic model respectively. At both of these points the disease will

become an endemic in the population.

4 Monte-Carlo Simulation:

Now, we use the Monte-Carlo technique to simulate our model again with initial conditions similar to

those which are used in the numerical simulation for the stochastic model in the previous section. Here we

take the infection rate as a random values of specific uniform distribution. This is more realistic due to

uncertainty of data available and the concern about the approximate value of the infection rate of this disease

in many developing countries like Egypt. In this section we use the Monte-Carlo Simulation simulation

technique to simulate our model. Then compare the results with the results which obtained in section 3 and

in (Moneim, A.I. and G. Mosa, 2006). The results of both numerical simulations of the deterministic and the

stochastic models are similar. We use the same parameter values used previously in both deterministic and

stochastic numerical simulations.

Since we assume that the population is mixing in a homogenous manner i.e. every person has the same

chance to become in contact with an infected person.

 (25)

 (26)

and

 (27)

with

1 2Where k  and k  are random numbers generated by specific uniform distribution. The present system (25) -

(27) is solved by using the fourth order Rung-Kutta method with time step h = 4 and evaluate the

1 2mathematical mean of S(t)I (t) and I (t) of 20 samples at each step to produce numerical solutions for means

1 2of S(t)I (t) and I (t) at any time. A computer program to solve our model using fourth order Rung-Kutta

method is written in the language of Visual-Basic under Excel and the package Zrandom to produce a random

numbers.

1 2Monte-Carlo Model is built to predict the values of the mean of each compartment S(t), I (t) and I (t) at

any time. As expected the results of Monte-Carlo simulation depend on the values of basic reproductive

01 02 01numbers (R R ) as shown in the following figures. These figures start of when the maximum value of R

0 2and R  less than one in this case the solution of our model goes to , (N00) which is the disease free

01equilibrium point DFE of the deterministic model (1)-(3), so the disease will die out. Otherwise if, R  is

02greater than R  and both are greater than one then the solution of the model goes to the second equilibrium

2 3 02point P  (1)-(3). Finally the solution of the model goes to the third equilibrium point P  of (1)-(3). When R

01 01 02> R  > 1. These results means that the disease at the maximum value of R  and R  is greater than one,

becomes endemic. The results obtained in this section are not only similar to the results which obtained from
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the numerical simulation of the deterministic model (Moneim, A.I. and G. Mosa, 2006), but also confirms the

result which obtained in the numerical simulation of the stochastic model in the previous section.

Now, we use the Monte-Carlo technique to simulate our model again with initial conditions similar to

those which are used in the numerical simulation for the stochastic model in the previous section.

01 02Figure (4) shows that, when the values of the basic reproductive numbers , (R  R ) are ( 0806 ), the

Mean of susceptibles, increases monotonically until it reaches its equilibrium value (N) as t becomes very

1large, and shows that, the mean of infectives type 4a, I , increases in the beginning of the disease until it

reaches a maximum value, and then decreases exponentially to approach its equilibrium value zero, as the time

2t increases. Finally the mean of infectives from all subtypes I , except type 4a, decreases monotonically and

similar to a strong exponential decay to approach zero (its equilibrium value). Therefore the disease will die

out in this case. These results confirm the asymptotic stability of the equilibrium point (N, 0, 0) from the

analytical study (Moneim, A.I. and G. Mosa, 2006). Also these results are quite similar to the results of the

numerical simulation for the stochastic model at the same conditions.

1Fig. 4: Mont Carlo simulations for the system (25)- (27) Plotting the Susceptibles S (t), Infectives (I (t) and

2 0 1 02 01 02Infectives (I (t) against the time when both (R  and R  are both less than one, precisely (R R ) =

(0806)

01 02Now we turn our attention when the values of the basic reproductive numbers, R  and R  are both grater

01 0 2 01 02than one. The first case when (R  > R  > 1). Figure (5) shows that, when (R R ) = (2010) the mean of

susceptibles, decreases to an asymptotic value with fluctuates around this level to the end of range. Figure(5)

1also shows that, the mean of infectives by (HCV subtype 4a), I , increases with clear fluctuation around an

asymptotic value as the time t increases. In the other hand Figure (5) shows that, the mean of infectives of

2type I  (HCV all subtypes except subtype 4a), increases in the beginning of the disease until it reaches a

maximum value, then decreases exponentially to approach zero as the time t increases. This behaviour is quite

01 02similar to that of the deterministic model when R  > R  > 1, as the solution approaches the equilibrium value

2P . In this case the disease will be endemic and persist in the population.

02 01Finally, we study the simulation results when (R  > R ) > 1. Figure (6) shows that, the mean of

susceptibles decreases to a certain asymptotic value and fluctuate around it to the end of the time. On the other

1hand, the mean of infectives of 4a subtype I , increases with clear fluctuation around its asymptotic value as

2the time t increases. Figure (6) also shows that, the mean of infectives I , of HCV from all subtypes except

subtype  4a,  increases  in  the  beginning  of the disease until it reaches a maximum value then decreases
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1Fig. 5: Mont Carlo simulations for the system (25)-(27) Plotting the Susceptibles S(t), Infectives (I (t) and

2 01 02Infectives (I (t) against the time when R  > R  > 1

1Fig. 6: Mont Carlo simulations for the system (25)-(27) Plotting the Susceptibles S(t), Infectives (I (t) and

2Infectives (I (t) against the time when ( 02 > 01) > 1R R

exponentially to an asymptotic level and oscillates around this value until the time lasts. These results are quite

similar to those of the numerical simulations for the deterministic and stochastic models solved in (Moneim,

A.I. and G. Mosa, 2006) and in the previous section.
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5 Discussion:

In this paper, we analyze a stochastic model for the hepatitis C virus with three compartments, susceptible,

infected of type one and of type two. We observe from our analysis that the mutation rate in the body of the

infected persons is a major factor to determine when the HCV will be endemic in the population or die out.

2The less the mutation rate is the less number of infected with type 4a. When the mutation disappears I  = 0

in this case there is a chance to control the disease and the model becomes a simple SI stochastic epidemic

model. The effective contact rates of infected individuals, from the two investigated types, are important ways

to free the population from hepatitis C. Further more, when we choose parameter values which insure that,

the effective contact rates of infected individuals with hepatitis C is sufficiently large, then the solutions of

01 02the stochastic model converge to an asymptotic endemic level depends on the values of R  and R  On the.

01 02other hand if the model parameters are small enough so that, R  and R  are both less than one in value the

solution converges to a disease free equilibrium value asymptotically. Threshold values under which the disease

dies out is been derived. These threshold values are given in terms of the mutation rate, birth rate, total

number of susceptibles and the contact rates. Moreover, our simulation shows clearly that the solutions given

in Figures 1, 2 and 3 always converge to asymptotic values which are equivalent to the stable behaviour of

the solutions of the deterministic model given in (Moneim, A.I. and G. Mosa, 2006). This also agree with

theoretical analysis of the same model.

1 2Next we add more realism to our model by taking k  and k * as random numbers generated by specific

uniform distribution. Here we use the same initial condition and similar parameter values to that used in

numerical simulation of Stochastic model. The results of Monte-Carlo Simulation of (HCV subtype 4a) at, are

very similar to the results of the numerical simulation of the stochastic model. The only and most important

different is that, the Mont carlo results show a small amplitude fluctuation around an asymptotic level, while

the stochastic solution always approaches an asymptotic value.

Finally the impact of the mutation rate ì of the disease inside the human body is a key parameter on the

persistence of the disease on the population. This important factor should be studied more and more. Also it

is interesting to focus on estimating the value of this important factor. This mutation rate works as a switch

from the endemic stat from level to anther level. So the value of ì plays an important role to determine which

level the solution of the stochastic model converges to it.

REFERENCES

Borrelli, R.L., C.S. Coleman, 1987. Differential Equations A Modeling Approach: Brentice Hall, New

Gersei.

Das, P., D. Mukherjee and J. Sarakar, 2005. Analysis of a disease transmission model of hepatitis C.

Journal of Biological Systems, 13(4): 331-339.

Deuffic, S., et al, 1999. Modelling hepatitis C virus in France. Hepatology, 29(5): 1596-1599.

Dusheiko, G., W.H. Schmilovitz, D. Brown, F. McOmish, P.L. Yap, P. Simmonds, 1994. Hepatitis C virus

genotypes: an investigation of type-specific differences in geographic origin and disease. Hepatology, 19(1):

13-18.

El-Zayadi, A., H. Abaza, S. Shawky, M.K. Mohamed, O. Selim and H.M. Badran, 2001. Prevalence and

epidemiological features of hepatocellular carcinoma in Egypt a single centre experience. Hepatology Research

19: 170-179.

Greenhalgh, D. and I.A. Moneim, 2003. SIRS epidemic model and simulations using different types of

seasonal contact rate. Systems Analysis Modelling Simulation, 43(5): 573-600.

Herbert, J., V.S. Isham, 1998. On stochastic host-parasite interaction models, Departmentl Research Report

No. 193 , Dept. Of Statistical Scirnce, University College, London.

Isham, V.S. and M.S. Chan, 1998. A Stochastic Model of Schistosomiasis Immuno-Epidemiology.

Mathematical Biosciences, 151: 179-198.

Isham, V.S., 1995. Stochastic models of host-macroparasite interaction, Ann. Appl. Probability, 5: 720.

http://hepatitis-central.com/hcv/genotype/explained.html

http://www.hepatitis-c.de/allhep.htm

http://www.hepnet.com/boca/willems.html

Kapur, J.N., 1988. Mathematical Modelling. Wiley Eastern Limited, New Delhi.

Kapur, J.N., 1992. Mathematical Models in Biology and Medicine. Affiliated, East-Weast Press, New

Delhi.



Aust. J. Basic & Appl. Sci., 3(2): 1253-1265, 2009

1265

Martcheva, M. and C. Castill-Chavez, 2003. Disease with chronic stage in a population with varying size.

Math Biosci. Vol 182, 1-25.

Moneim, A.I. and G. Mosa, 2006. Modelling the hepatitis C with different types of virus genome.

Computational and Mathematical Modelling in Medicine, 7(1): 3-13.

Murthy, D.N.P. N.W. Page and E.Y. Rodin,  1990. Mathematical Modelling. A Tool for Problem Solving

in Engineering, Physical, Biological and Social Sciences. Oxford.

Oliver, G.P., A.C. Michael, G. Sunetra, R. Andrew, C.H. Edward, H.H. Paul, 2001. The Epidemic

Behavior of the Hepatitis C Virus. Science, 292: 2323-2325.

Ray, S.C., R.R. Arthur, A. Carella, J. Bukh and D.L. Thomas, 2000. Genetic epidemiology of hepatitis

C virus throughout Egypt. J. Inf. Dis., 182: 698-707.


